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Equation (4.5) for w1 (z, y) with homogeneous boundary conditions and zero right- 

hand side yields a zero solution. Consequently 

w=w(x)=t , 

~=,(,,=+-(1--+$ bf$ >( + w) 

V=Y& 1 +I’.+~& 
Unlike in Sect. 3 the radiation transfer affects the flow of gas in a channel with adia- 

batic wall even in the first approximation when 7, N 1. When 7, + 00 all form- 
ulas in Sect. 4 coincide with corresponding formulas in Sect. 3. 

Authors thank V. N. Koterov for discussing this paper. 
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The nonlinear evolution of small amplitude waves in a viscous heat-con- 
ducting gas at low and high Boltzmann radiation number is investigated on 

the example of the piston problem. 



798 V. N. Koterov 

Results of calculations of the formation of weak stationary shock waves and 
of the damping of triangular compression pulses are presented. 

Radiant energy transport in small amplitude waves was considered in numerous 
publications (see, e.g., the bibliography in [l, 21 ). The majority of investigations 
of radiative gas acoustics were carried out in linear approximation. Linear analysis 
shows that in a radiative gas the propagation and damping velocities of small pertur- 

bations depend on the charactistic optical thickness r and on the Boltzmann radia- 
tion number Nno which defines the ratio of convection and radiant energy fluxes. 

When Nn, -land Z- t , the perturbation propagation velocity lies between 
the isothermal ‘T and the isentropic as speeds of sound. The basic process which 
leads to the damping of perturbations is in this case the dissipation of radiant energy 

by the perturbed region. Since damping takes a comparatively short time, the non- 
linear convection effects, which are cumulative and depend on the input equations of 

gasdynamics, cannot make themselves felt. Thus for Nu, - i and 7 - 1 the 
equations of linear acoustics of radiative gas completely define the damping process. 

When Nn, >> i and, also, when 7 9 1 and 74 i, velocity a is 

close to a, while when N,, e i and z - 1, velocity a is close to aT. In 

these limit cases the perturbation damping by radiant energy dissipation is small, and 
the nonlinear convection effects are evident to their full extent. 

Equation of the theory of nonlinear acoustics for waves in a radio-active gas 

were obtained in [2]. Laws of nonlinear damping of optically thick and thin pertur- 

bations were investigated in [3]. It should be noted that radiative transport of energy 
can strongly affect the damping of perturbations even in a cold gas. For example, 

according to estimates by the linear theory damping of low-frequency acoustic waves 

at sea level of the Earth’s atmosphere is basically due to energy transport in infra-red 
bands of steam absorption [4,5]. It is also known ( *) that subsonic waves propagate in 

the atmosphere of planets for considerable distances. Hence nonlinear effects can consid- 
erably affect the law of their damping. It is interesting to investigate the combined 

effect of radiative transport and nonlinear convection effects. 
l. Let us consider a half-space filled with a viscous heat-conducting radiative 

gas and bounded by a plane wall (piston) moving according to the law 

5, (t) = ELf (ad / L), 7.4, (t) = eaof’(aot / L), e < 1 (1.0 

where, and everywhere below, primes denote derivatives of the dimensionless function 

f , which defines the law of piston motion, with respect to its argument; zW defines 
the piston position in a system of coordinates whose 2: -axis is normal to its surface; 

t is the time; L is a characteristic length of piston displacement; E is a small 

dimensionless parameter: UO the characteristic propagation velocity of small pertur- 
bations, and u, is the piston velocity. It is convenient to assume in what follows that 

%J coincides with either the isentropic or the isothermal speed of sound. 

( + ) See, e.g., Golitsyn, G. S. and Chunchuzov, E. P., Acoustic-gravitational 
waves in the atmosphere. Survey of Experimental and theoretical data. 
VINITI. dep. No. 7200-73 ( RZhGeofiz. , No. 3, 3A-144, 1974 ) 
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If the assumptions usually made in dynamics of radiative gas about local thermo- 
dynamic equilibrium, absence of dissipation, and negligibly small pressure and inter- 
nal energy of radiation in comparison with the pressure and internal energy of gas, are 
applied in this case, the motion of gas is defined by equations [6f 

where 8 is the specific entropy of gas; 5 is the coefficient of longitudinal viscosity: 
h is the coefficient of thermal conductivity; q is the total flux of radiant energy: 
v is the radiation frequency; P is the cosine of the angle between the 2 -axis and 

thi: light ray; 1, is the radiation intensity; xy is the coefficient of absorption of gas, 
and & is the Planck function that specifies the intensity of equilibrium radiation. 

System (1.2) must be supplemented by two relationships (equations of state) which 
link the thermodynamic variables p, pI T, and s and specify the dependence of co- 
efficients of viscosity 5, thermal conductivity 3, and of absorption XV on the two of 
these. 

The boundary condition for Eqs. (1.2) which defines the absence of mass flow 
through the piston surface is of the form 

24 [t, &JJ @)I = U, (t) (4.3) 

The second boundary condition which defines the radiative transport of energy at 
the piston surface will be formulated when required. 

In what follows it is convenient to use two corollaries of Eqs. (1.2) [21 

(1.5) 

Let us define the Reynolds number NIG and the Prandtl and Boltzmann numbers 
NP~ and NBo respectively, in terms of parameters of the unperturbed state of gas 

which will be everywhere denoted by subscript zero. 
We have 

NRe = fbd/ to, NPr = &to / A,, NBo = &I~@~ / @To4) U.6) 

where CPO and cv are specific heats of gas at constant pressure and constant volume, 
respectively, and CT = 2n6k4 f (15h3ca) is the Stef~-Bol~mann constant. 

Two limit mode&B0 > 1 andfVB, 4 i in which it is necessary to take into 
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account the convective nonlinearity of flow are considered here. In the first case the 
perturbation spreads through a comparatively cold and dense gas. The second case re- 

lates to the spreading of perturbation through a fairly hot gas whose density is compar- 

atively low. We also assume that I” rt\ 

since NE& ML/&$ where +&is the length of gas particles mean free path. 
To take into account the boundary conditions (1.3) it is necessary to use the 

dimensionless variables 
tl = a,t / L, Xl,=ZlL (4 3) 

It is reasonable to seek the solution in the form of asymptotic expansions [Z] 

u = EU&l + . . ., P = PO (1 + Jvl + * * *) (1.9) 
p = p. + woaoapl + . . ., s = so (1 -I- e,s, + . . .) 

2 = To (1 + OTT, + . . .), g = WT,"gl + . . . 

I 
az3 

"=B~+~T~q$-&l+s.. 
0 

Then from (1.1) and (1.3) for the perturbation of velocity U1 we obtain the 
following boundary conditions [‘?I : 

% (b 0) = %o (&I 
(1.10) 

In expansions (1.9) 8s and eT are small parameters whose relation with param- 
eter 8, which defines the piston velocity, and with the Boltzmann numberl\fBodepends 

on the considered mode (NB, > 1 or NB~ < 1). 

Using variables (1.8) we obtain for the perturbations linear equations which are 

valid when t, - 1 and the perturbation is fairly close to the piston (in the closest zone). 

After a reasonably long time (tl> 1) when the perturbation is far away from the piston 

(in the distant zone), these equations are no longer valid, even if only because of the 
singularity in second approximation equations of linear acoustics [7]. To correctly de- 

fine the evolution of perturbations when t1 > 1 it is necessary to use variables 

8s = Aa$ I L, q. = (z - a,$) I L, A < 1 (1.11) 

which together with expansions (1.9) yield equations for nonlinear short waves [2]. The 
initial condition for these equations may be obtained by asymptotic joining with the 
linear solution that is valid at the initial instants of time [7] . 

2, Let us, first, consider the mode of considerable Boltzmann numbers 

NBo> 1 I2.4) 

when the velocity of perturbation propagation is close to the isentropic speed of sound. 
For this we set in (1.1) , (1.6) , (1.8), (1.9) , and (1.11) a, = aho and use the equ- 

ation of state of the form P = P (p,,s) and T E T (p, s). 

Taking into account assumptions (1.7) and (2.1) and the boundary condition (1. lo), 
we obtain from (1.2) and (1.9) in the closest zone and t1 - 1 the perturbations of 

gasdynamic quantities and determine the order of small parameters ET and 88 
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U=p=p=T=f’(tl-xl), ?&z= /; cmTo ST _ _ acl (2.2) 
Re Pr 2 azp ax1 50 

(2.3) 

where subscripts at perturbations are henceforth omitted. 
Thus in the Nno >> 1 mode entropy perturbations are considerably smaller than 

the perturbations of remaining gasdynamic quantities. Such flows were called in [Z] 

quasi-isentropic ( isentropic in the first approximation ). In the first approximation the 
radiative transport of energy affects the flow dynamics in the closest zone, while sol- 
ution (2.2) defines a perturbation that propagates at the isentropic speed of sound with- 

out altering its form. The radiation intensity, radiative heat flux, and the perturbation 
of entropy are determined after integration of the transport equation in which the dep- 

endence of the absorption coefficient X, and of the Planck function *B, on coordinate 

XI and time tr were previously determined with the use of (2.2). 
In the distant zone t, N 1 and Xs cu 1 assumptions (1.7) and (2.1) also lead to 

links (2.3) between the small parameters and to the following integrals for perturbations 

VI : u=p-p=T (2.4) 

In variables (1.11) of the distant zone coordinate G72 = 8f ft2 / A> - t2 / A, 

A (( 1 corresponds to the piston. Hence it is possible to assume in the first approx- 

imation that in the distant zone Xws = - 0;) and to consider the transport of radiant 

energy in a boundless space. In that case expansions (1.9) yield the following formula 

for the derivative of radiant energy flux [2] : 

where %o is the acoustic absorption coefficient ano ‘$ is the acoustic optical thickness. 
The quantity w is the perturbation of radiant energy density suitably averaged with 

respect to the radiation frequency. It is related to the temperature ~~~a~on by the 
integral operator 

m 

W+- 
’ s T Vz, El Fl(to 1x2 - E I) d!j (2.6) 

We emphasize that formulas (2.5) and (2.6) are valid for any ratio e / ET. 
For simplicity we apply the approximate method proposed and analyzed in [8]. 

We approximate kernel pZ of the integral operator (2.6) by the exponent 

Fa (9) = n exp (-ny), n = const > 0 (2.7) 

after which (2.6) is reduced by double differentiation with respect to the coordinate to 
the differential equation 

d2w / axs2 = rho2 (w - 2’) (2.8) 
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The optimum choice of the approximation constant n 
dependence of the absorption coefficient ld,s and frequency 
considered here. 

depends on the specific 
v which will not be 

Below it is convenient to use Eq. (1.4) [2] . Then with allowance for assump- 
tions (1.7) and (2. 1) , expansions (1.9) , relationships (2.3) between the small para- 
meters, formula (2.5) for the derivative of radiant energy flux, Eq. (2.8) , and inte- 
grals (2.4) in variables (1.11) , we obtain the following equations : 

N 
2NROem,0 

‘== l+tro-i,/NYr ’ 
b, = NBPCPOTIP,O 

Sa8,2 (yo-- 1) ’ ’ = nZo 

1 
m,o = m 

3% 
(3 

v=$, %o 
av,a sf To=----, 

Go 
A=en~,~ 

(2.9) 

which define the nonlinear propagation of acoustic perturbations in a radiative gas 
when Nno > 1: 

The parameter N, in Eqs. ( 2.9) defines the effect of viscosity and corpuscular 
thermal conductivity. When N, > 1 this effect is small. 
The parameter b, which is propo~ional to the Boltzm~n number defines the effect of 
radiation, It is small when b, > 1. The parameter z is the effective optical 
thickness of perturbation. 

The initial condition for Eqs. (2.9 ) is obtained by joining with solution (2.2 ) 
which is valid at the initial instants of time. Joining is carried aut in the intermediate 
bounds [7] 

,z* = xs = x1 - t,, t, = 6 (f& 
6 (8) -+ 0, 6 (8) I 8 3 00 

(2.10) 
npH. e 3 0 

and yields the initial condition 

u (0, ;t;) = f’(- Ss) 42.11) 

Results of numerical computations of Eqs. (2.9) are shown in Figs. 1 and 2. To 
isolate the effect of radiant energy transport N, = 200 was assumed in all comput- 
ations, since at high values of parameter N, the viscosity effect is essentially reduced 
to smoothing out weak and strong discontinuities. Allowance for low viscosity makes 
it possible to carry out continuous computation through shock waves that may appear 
in the solution when parameter b, is fairly large. Computations were carried out by 
the two-sheeted implicit difference scheme. Terms which describe in (2.9) viscosity 
and radiation were taken from the upper time layer in order to avoid the difficulties 
associated with the instability of computation by the explicit scheme. Difference 
equations were solved by running through the matrices. 

0 i xG 2 

Fig. 
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Figure 1 shows the formation of a weak stationary shodk wave induced by a piston 
which at the instant of timet = 0 begins to penetrate into the gas at low co~~tvel~ity 

In this case f (tl) = 0 when t, < o and f (tl) = rl when tl >, 0. Wheu 

the radiation transport is defined by the single-term exponential approximation model 
(2.8) , the considered problem has only one characteristic linear dimension : the eff- 

ective length of the radiation free path 2, = i i (nxd- Hence it is possible to set 

without loss of generality in (2.9) z = 1. In Fig. 1 the coordinate xX = “2 - r, / 2 

at which the shock wave front is stationary is measured from the sound plane where 
u = i/s* I In this case the solution of Eqs. (2.9) is symmetric about point z+ = 0, 

u = l/s, hence only the right-hand half of the flow is shown in the diagrams, The 

dash lines relate to stationary solutions toward which the perturbation evolves. 
The compression shocks partly dispersed by radiation are clearly visible in Fig. 

When the effect of radiation is moderate (Fig. 1, a , where h, = 4)) the compression 

shock remains also in the stationary solution. If the radiation effect is stronger ( Fig. 

1,bwhere ba=i), the compression shock is completely blurred by radiation, and 

the stationary wave is totally dispersed. 

Fig. 2 

If the stationary analog of Eqs.(2.9) 
is analyzed for N, = 00 in the neighbor- 
hood of the singular point wbichcorres- 

ponds to the sound plane, it is possible, 
as in [9l, to obtain the sufficient con- 
dition of existence of weak stationary 

partly dispersed shock waves t)* > m 
numerical computation show that con- 
dition is ago the necessary one, since for 

bl < ?2 a weak stationary wave is 

completely dispersed by radiation. The 
results of computation of damping of a 

triangular compression pulse of optical 
thickness z = 1 induced by a unifo~ly 

accelerating and then decelerating piston are shown in Fig. 2. When the effect of rad- 
iation is not too strong (Fig. 2, a , where b,=2 ), a compression shock weakly 
dispersed by radiation is formed at the beginning. It propagates at a velocity that is 
somewhat higher than the isentropic speed of sound. After some time the shock is 
completely blurred by radiation, and the acoustic pulse becomes an optically thick 

perturbation with mildly sloping forward and rear fronts, When the radiation effect is 
stronger (Fig. 2, h where b, = 0.6 ), the incipient compression shock is strongly dis- 
persed by radiation, which is shown by the difference in the slopes of shock fronts in 
Figs. 2, a and b . The case of b, = 0.4 when convective nonlinear effects are 
balanced by radiation and the slope of the perturbation forward slope remains virtually 
unchanged is shown in Fig. 2, c . Finally, when the effect of radiation is strong 
(Fig. 2, d , where b. = 0.2), the perturbation is rapidly damped and the effect of 
convection nonlinearity on the flow is almost negligible. 

It is seen from Fig. 2 that at later instants of time the pulse becomes optically 
thick and its amplitude becomes small in comparison with the initial one. 
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Since we are interested in the 
hence we introduce variables 

law of nonlinear damping of the pulse when rZ - CO, 

and expansions 

u=eUu3+ . . . . UJ=E&‘~+ . . . . &((I, e,ei 

Substituting these expansions into (2.9) we obtain 

w, = u3, Ar=eU==ee,=fq 

A similar equation, often called the Burgers equation, defines the nonlinear pro- 
pagation of small amplitude waves in a viscous gas [lo]. Thus, when rs - 03 the 
nonlinear perturbation in a radiative gas is damped as the perturbation in a viscous 
gas with the effective parameter N,* = N,b,T ! (N, -I- be@. 

3. Let us consider the mode at small Boltzmann numbers 

NBO-=O (3.1) 

In the absence of external radiation sources at temperature that differs consider- 
ably from that of gas, then for Nn,, < 1 the powerful energy transport by radiation 

results in the equalization of temperatures in various flow regions. Hence the pertur- 

bation of temperature must be considerably smaller than the perturbations of remaining 
thermodynamic quantities so that 

ET < E 

In [2] such flows are called quasi-isothermal. (3.2) 

If we assume in our problem that the piston radiate8 as an ideal black body temp- 
erature T,, then the flow is quasi-isothermal when (T, - T,j N eTTo. The other 
case of quasi-isothermal flow, which is considered below, is that of the adiabatic 
piston which completely or nearly completely reflects radiation. 

When NB~ < lthe perturbation propagation velocity is close to the isothermal 

speed of sound. Hence we set UO = UT~ in(l.l), (1.6), (1.Q (1.5% and(l.ll) 
and use the equationof state of the formP = p (p, T) ands = s (p, r).Then, taking 
into account assumptions (1.7), (3.1) and (3.2) and boundary conditions (1. lo), in the 

near zone ti N 1 and zi - 1 for the perturbations of gasdynamic parameters we 

obtain 

and determine the small parameters e, and ET 

es=-e(~)T-e, eT= -$$%(-&k$_),ge (3e4) 

Solution (3.3) defines the perturbation which propagates at the isothermal speed of 
sound without changing its form. 

Let us determine the temperature perturbation. In the first approximation the 
coordinate. 51 =; 0 corresponds in the near zone t, N 1, z1 - 1 to the piston. 
We assume, for simplicity, that the piston completely reflects radiation like a mirror 
in conformity with laws of geometrical optics. Then, owing to symmetry, the rad- 
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iative transport of energy in region + > 0 does not vary, if one formally considers 
the unbounded space in which the perturbation of gas temperature, continued into 
region ~1 < 0 is even : T (tl, xl) = 2' (tl, - xl). Further we use expansions (1.9) 

which yield equations that coincide with (2.5) and (2.6) to within the accuracy of the 

substitution of tl, x1 for ts and Xs_We then use the exponential approximation (2.7) 

which yields an equation of the form (2.8) but with a derivative with respect to ~1 

in its left-hand side. Finally, using formulas (3.3) we obtain the equations which 
determine temperature perturbations and the mean density perturbation of radiant energy 

d2w I dx12 = - t'f" (tl- x1), T = w + f" (tl - x1), T = nz, (3.5) 
Since the piston is assumed to be adiabatic, hence at its surface q = 0, i.e. 

SW / 8x; = 0 when ~1 = 0. Furthermore the radiant energy density w must be 
a continuous unction. These conditions and (3.5) make it possible to determine the 

perturbation of temperature 

T = f”(ti - xi) - r2 [f ( tl - x1) - f’ (t,)(t, - xl)1 (3.6) 

At the piston surface x1 = 0 

T = f”(t,> - x2 ff (tJ - f’(t&J (3.7) 

When the considered pulsed motion of the piston such that 

f (+=g = CO=% f’(tJtl -+ 0, f”(tJ + 0 IIprr t1-e 00 (3.8) 

then after a fairly long time ( for tl + 00 ) the temperature of the piston surface 

reaches the value 
T (00, 0) = - r”f (+oo) (3.9) 

This means that behind the spreading acoustic compression pulse(f (i-00) > 0)the 
temperature is lowered, while behind a rarefaction pulse (f (+co> ( 0) it is 

increased 
If condition (3.8) is not satisfied, the perturbation of gas temperature indefinitely 

increases some time after the passing of the wave. This means that for such piston 

motions the flow is not quasi- isentropic throughout the region when time tl is fairly 

long. We restrict our considerations to acoustic pulses only. 

In the distant zone tz - 1, 5, - 1 (we recall that now in (1.11) we have 

a0 = are ) the assumptions (1. ‘7) and (3.1) also yield formulas (3.4) and the inte- 

grals [2] 
(3.10) 

The derivative of the radiant energy flux in the one-term approximation (2.7) 
is related to temperature perturbation by Eqs. (2.5) and (2.8). The lacking equation 

can be derived from (1.5) [2]. After transformation we obtain the following system 

of equations 
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v=$, A = emTo 

in which parameter NT describes the effect of viscosity and parameter bT which is 
proportional to the Boltzmann number, defines the effect of radiation. The system of 

Eqs. (3.11) defines in the one-term exponential approximation the nonlinear propag- 

ation of acoustic pulses in a radiative gas when NB~ (( 1. 
The initial condition for (3. 11) is obtained by joining it with solution (3.3) in the 

intermediate range (2. lo), and is of the form (2. 11). 

It is not difficult to determine the behavior of gas temperature when xp = - 00 
Since then u + 0 and 8~ /ax, +- 0 hence 

+a 
T(t,, -00) = w(t,, -co) =- 22 s 24 (t2t E) d% 

-00 

Now, integrating the equation for u in (3. 11) with respect to the coordinate 

within the limits - oo to +00 , and solving the obtained differential equation with 

allowance for (3. S), we obtain 

T (t,,-oo) = - z2f (+oo)exp (-T2bTt2) (3.12) 

Formulas (3.7) and (3.12) completely define the behavior of temperature at the piston 
surface : first, the perturbation of the temperature absolute value increases and, then 
is damped in conformity with the exponential law. 

The damping of a triangular compression pulse computed for T = 1 in an in- 

viscid gas (NT = w) is shown in Fig. 3. If parameter @r is not much different from 
unity (Fig. 3, a for bT = land Fig. 3, b for bT = 0.1 ), the perturbations are very 

quickly damped. When parameter b T is very small (Fig. 3, c for b, = 0.01) 

a narrow zone with a sharp velocity 
gradient, which propagates at a velocity 

somewhat higher than the isothermal 

speed of sound, appears in the stream. 
It follows from the equation for T in 
(3.11) that the temperature perturbation 

sharply increases (see Fig. 3, d where 
the perturbations of velocity and temp- 
erature are shown by dash and solid lines, 

respectively ). 

Fig. 3 

au au 

By expanding velocity u in an 
asymptotic series in integral powers of 

parameter bT we obtaln from (3.11) the 
first approximatio;l equation 

at,+“i?Tg-=O 
The solution of this equation for fairly long times t, may contain discontinuities, even 
if at the initial instant velocity U is continuous. Let t,o and 220 be, respectively, 
the instant and the coordinate of incipient discontinuity, u- (ta) and U+ (tJ be the 
velocities of gas immediately behind and in front of the discontinuity, and 0Lf (tn) 
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be the translational velocity of the latter. To reveal the real structure of such discon- 
tinuity we introduce the inner variable 

t 
z=- 22-1f&- 

bT [ ‘s 1 cs (4) dE 
tar 

and again use the expansion in integral powers of parameter bT . Then from (3.11) 
we have the following internal equation : 

au ak 
i” -$ tt2)laz2 

(3.14) 
-=- 

ax22 

Asymptotic joining with the external solution defined by Eq, (3.13) provides the 
required solution of Eq. (3.14) and makes it possible to determine velocity Cs (t2) 

4s tt2, 
u tt2, +--cs (t2) - -ij- tb iAs (t2) z], 

u i-u 
cs = -- 2 , A,=u -_u * 

The obtained solution is of the same form as the Taylor solution for the structure 
of a viscous compression shock, It makes it possible to determinate from (3. 11) the 
temperature peak shape in the zone of sharp velocity gradients 

T (129 4 = ws (t2) + 2b 
-y- [ch (*sz~]-2 

where ‘us (f2) is the perturbation of radiant energy density at the discontinuity of 
the external solution defined by Eq. (3.13). We have 

tt 

u (tzv 22) dx2, xs @a) = %I + s cs (4) dE 
1x0 

The author thanks V. V. Aleksandrov for consultations and continuous interest in 
this work and, also Iu. B. Lifshits for discussing the results and valuable remarks. 
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The subject of present investigation is the diffraction of a shock wave of arb- 
itrary intensity on a thin wedge moving at a supersonic speed. The plane 
of the shock wave forms an almost right angle with the symmetry plane of 
the wedge. The interaction between the fronts is assumed sporadic. 
Studying the pressure perturbation along the front, a singularity of the type 
similar to that appearing when a weak pressure jump is diffracted on a 
wedge of finite opening angle with an attached shock, is discovered. This 

case was dealt with in 111. The boundary value problem which is solved 
here using the results of [Z, 31 enables us to find the pressure perturbations 
at the wall and along the shock front, and obtain the expression for the 

front in terms of elementary functions, The above problem was analyzed 
for the case of regular interaction in [3] , where a method of generalizing 
the solution to the case of sporadic interaction was also suggested. The me- 
thod however turned out to be impracticable. 

1. A thin wedge moves through a quiescent perfect gas at a supersonic speed 

adim where a, denotes the speed of sound in gas. The half apex angle of the 
wedge e is a small parameter of the problem. At the instant t = Othe edge of the 
wedge encounters the front of the plane shock wave of arbitrary intensity propagating 
at the speed a&f The plane of the shock wave forms an angle X = n ! 2- 6, 
which is nearly a right angle, with the plane of symmetry of the wedge (angle 6 is of 
the. order of a ) . 

The self-similar plane motion arising at t > Orepresents a perturbation in a hom- 
ogeneous flow behind the shock wave. 


